1 (a clear attempt at semi circles, at least 3 [1]
same wavelength as incoming wavefronts, by eye
(b) speed \div wavelength or $20 \div 2.5$ or $v=f \lambda$ [1]8 Hz or $8 \mathrm{~s}^{1}$ or 8 waves/second
(c) candidate's (b) OR "the same" OR nothing[1]
(d) low frequency signals have longer wavelength (than high frequency signals) OR high frequency signals have shorter wavelength [1]
low frequency signals / long wavelength signals diffract more OR low frequency / short wavelength signals diffract less [1]
2 (a (i) any value between 6 and 7 mm seen C1
$26 \pm 2 \mathrm{~mm}$ OR $2.6 \pm 0.2 \mathrm{~cm}$ A1
(ii) $v=f \lambda$ in any form $\mathrm{OR}(f=) v \div \lambda$ OR $0.39 \div 0.026$ C1
$=15 \mathrm{~Hz}$ ecf (i) A1
(b) at least 4 wavefronts showing refraction in correct direction B1
7 parallel wavefront lines continuous with those in fast region B1
(c) unchanged / nothing B1
3 (a (i) (number of complete) vibrations (of the strip) per second/unit time B1
(ii) maximum displacement of end of strip from mid-position OR XY OR ZY OR XZ $\div 2$ B1
(b) (i) $(t=) d \div v$ OR $2 d \div v$ C1
0.20 s OR 0.2 s A
(ii) 0.60 s OR 0.6 s c.a.o. B1
(c) (i) accept any value between 1.0 and $9.9 \times 10^{3} \mathrm{~m} / \mathrm{s}$ B
(ii) accept any value between 1.0 and $9.9 \times 10^{3} \mathrm{~m} / \mathrm{s}$ B
(d) $v=f \lambda$ in any form $\mathrm{OR} v \div f$ C1
correct evaluation from candidate's (c)(i) with unit, expect 0.016 m B
4 (a pressure high/increased OR molecules/particles close(r/st together) B1
(b) (i) 1.7 m B1
(ii) $v=f \lambda$ in any form $O R(f=) v / \lambda$ OR $5 / 0.025$ 200 Hz A1
(c) three compressions at $23^{\circ}-33^{\circ}$ to wall B1 constant and correct wavelength by eye only scored if at $8^{\circ}-48^{\circ}$ to wall B1
(d) (wavelength) greater B1
change of speed correctly related to change of wavelength B1

vibrations parallel to direction of travel (of wave energy)

 OR compressions move in direction of travel (of wave energy)(b) (i) $(\lambda=) v / f$ OR 6100/7500 OR 6100/7.5
0.81 (33333) m OR 813(33333) mm
(ii) 1. decreases B1
2. same answer as 1.

6 (a (i) longitudinal: oscillations/vibration of particles/molecules in direction of travel
(of wave)

transverse: oscillation/vibrations of particles/molecules perpendicular to
direction of travel (of wave)
(ii) 1. e.g. sound wave / compression wave on a spring B1
2. e.g. any named electromagnetic wave / ripples / water wave / wave on a stretched rope B1
(b) use of $v=f \lambda$ in any form $\mathbf{O R}(\lambda=) v / f$ OR 7200/30 OR 7.2/30 $240 \mathrm{~m} / 0.24 \mathrm{~km}$ A1
(c) no sound heard/quieter sound B1medium/air required to transmit soundOR sound does not travel through a vacuumB1
7 (a (i) diffraction
(ii) 1 or 2 parallel waves (and part-circular ends) in outer harbour
NOT part-circular ends going down

3 part-circular waves, $>45^{\circ}$ each side by eye, in inner harbour allow flat below gap
centred in gap, allow error up to 1λ vertically B1
wavelength constant throughout, must have 3 extra wavefronts, judged along line of direction of wave travel in Fig. 5.1

B1
(b) (i refraction
$\begin{array}{ll}\text { (ii) at least } 4 \text { parallel, straight waves joined onto original waves } & \text { B1 } \\ \text { at least } 3 \text { straight waves, sloping down to the right OR with constant reduced } \lambda & \text { B1 }\end{array}$

